วันจันทร์ที่ 12 มกราคม พ.ศ. 2558

ฟังก์ชันขั้นบันได

ฟังก์ชันขั้นบันได หมายถึง ฟังก์ชันที่มีโดเมนเป็นสับเซตของจำนวนจริง และมีค่าของฟังก์ชันเป็นค่าคงตัวเป็นช่วงๆ มากกว่าสองช่วง กราฟของฟังก์ชันนี้มีลักษณะคล้ายขั้นบันได อ่านเพิ่มเติม

ฟังก์ชันค่าสัมบูรณ์

ฟังก์ชันค่าสัมบูรณ์ที่อยู่ในรูป y = l x - a l + c เมื่อ a และ c เป็นจำนวนจริง ตัวอย่างที่ 1 จงเขียนกราฟและหาโดเมนและเรนจ์ของ f(x) = l x  อ่านเพิ่มเติม

ฟังก์ชันเอกซ์โพเนนเชียล

จากบทนิยามของฟังก์ชันเอกซ์โพเนนเชียล ฟังก์ชันนี้มีรูปแบบในรูปของเลขยกกำลัง โดยฐานของมันต้องมากกว่า 0 และฐานต้องไม่เป็น 1 อ่านเพิ่มเติม

ฟังก์ชันกำลังสอง


     ฟังก์ชันกำลังสอง คือ ฟังก์ชันที่อยู่ในรูป y = ax2 + bx + c เมื่อ a, b, c เป็นจำนวนจริงใดๆ และ a ≠ 0 ลักษณะของกราฟของฟังก์ชันขึ้นอยู่กับค่าของ a, b และ c เมื่อ a เป็นจำนวนบวกหรือจำนวนลบ จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ   อ่านเพิ่มเติม

ฟังก์ชันเชิงเส้น

 ฟังก์ชันเชิงเส้น n ตัวแปรมีรูปทั่วไป คือ y = a1x1 + a2x2 + a3x3 + … + anxn  ซึ่งในระดับชั้นนี้เราจะพิจารณาฟังก์ชันที่เขียนอยู่ในรูป y = ax + b เมื่อ a, b เป็นจำนวนจริง และ a ≠ 0 ซึ่งมีกราฟเป็นเส้นตรง อ่านเพิ่มเติม

ความสัมพันธ์และฟังก์ชัน

ในชีวิตประจำวันเรามักพบ สิ่งที่มีความเกี่ยวข้องกันอยู่เสมอ เช่น สินค้ากับราคาของสินค้า คนไทยทุกคนจะต้องมีเลขประจำตัวประชาชนเป็นของตนเอง ตัวอย่างที่กล่าวมาเป็นตัวอย่างที่แสดงความสัมพันธ์ของสิ่งสองสิ่งที่เกี่ยว ข้องกันภายใต้กฎเกณฑ์อย่างใดอย่างหนึ่ง สำหรับในวิชาคณิตศาสตร์มีสิ่งที่แสดงความสัมพันธ์ดังตัวอย่างต่อไปนี้  อ่านเพิ่มเติม

ค่าสัมบูรณ์ของจํานวนจริง

  ค่าสัมบูรณ์ของจำนวนจริง (absolute value หรือ modulus) คือ ระยะทางที่จำนวนนั้นๆ อยู่ห่างจากศูนย์ (0) บนเส้นจำนวนไม่ว่าจะอยู่ทางซ้ายหรือทางขวาของศูนย์ ซึ่งค่าสัมบูรณ์ของจำนวนใด ๆ จะมีค่าเป็นบวกเสมอ อ่านเพิ่มเติม